skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Luckie, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. NA (Ed.)
    Abstract Four decades of seismic reflection, onshore‐offshore and ocean‐bottom seismic data are integrated to constrain a high‐resolution 3‐D P‐wave velocity model of the Hikurangi subduction zone. Our model shows wavespeeds in the offshore forearc to be 0.5–1 km/s higher in south Hikurangi than in the central and northern segments (VP ≤ 4.5 km/s). Correlation with onshore geology and seismic reflection data sets suggest wavespeed variability in the overthrusting plate reflects the spatial distribution of Late Jurassic basement terranes. The crustal backstop is 25–35 km from the deformation front in south Hikurangi, but this distance abruptly increases to ∼105 km near Cape Turnagain. This change in backstop position coincides with the southern extent of shallow slow‐slip, most of which occurs updip of the backstop along the central and northern margin. These relationships suggest the crustal backstop may impact the down‐dip extent of shallow conditional stability on the megathrust and imply a high likelihood of near/trench‐breaching rupture in south Hikurangi. North of Cape Turnagain, the more landward position of the backstop, in conjunction with a possible reduction in the depth of the brittle ductile transition, reduces the down‐dip width of frictional locking between the southern (∼100 km) and central Hikurangi margin by up‐to 50%. Abrupt transitions in overthrusting plate structure are resolved near Cook Strait, Gisborne and across the northern Raukumara Peninsula, and appear related to tectonic inheritance and the evolution of the Hikurangi margin. Extremely low forearc wavespeeds resolved north of Gisborne played a key role in producing long durations of long‐period earthquake ground motions. 
    more » « less
  2. First-generation college students (FGCS), defined as students whose parents did not earn a baccalaureate degree, encounter distinct obstacles navigating academia. Barriers faced by FGCS, including lack of financial security, lower sense of belonging, and inadequate mentorship, are often compounded by the intersection of other marginalized identities. As such, efforts to improve diversity, equity, and inclusion can and should include FGCS. To better support FGCS, first we must fully understand who they are, where they are pursuing degrees, what they choose to study, and their representation in the geosciences. We use over 40 years of data to explore the demographics and field of study of FGCS in U.S. institutions. We observe that FCGS have outnumbered non-FCGS at the undergraduate level since data collection began in the 1990’s. At the doctoral level we present data from 1974-2016 that show that although non-FGCS have outnumbered FGCS since the 1990’s, most doctoral graduates of color continue to be FGCS. Our data also show that in 2016 over 61% of all undergraduates receiving a bachelor’s degree across all fields were FGCS, 54% of physical science undergraduates were FGCS, and yet only 25% of those in the geosciences were FGCS. Out of the various fields analyzed, the geosciences have the lowest percentage of FGCS at the undergraduate and doctoral level. This begs the question, why are FGCS yet another markedly underrepresented group in the geosciences? Here we begin to address this question and provide guidance for how to reduce barriers to FGCS inclusion in the geosciences. 
    more » « less
  3. Abstract Detailed models of crustal structure at volcanic passive margins offer insight into the role of magmatism and the distribution of igneous addition during continental rifting. The Eastern North American Margin (ENAM) is a volcanic passive margin that formed during the breakup of Pangea ∼200 Myr ago. The offshore, margin‐parallel East Coast Magnetic Anomaly (ECMA) is thought to mark the locus of syn‐rift magmatism. Previous widely spaced margin‐perpendicular studies seismically imaged igneous addition as seaward dipping reflectors (SDRs) and high velocity lower crust (HVLC; >7.2 km/s) beneath the ECMA. Along‐strike imaging is necessary to more accurately determine the distribution and volume of igneous addition during continental breakup. We use wide‐angle, marine active‐source seismic data from the 2014–2015 ENAM Community Seismic Experiment to determine crustal structure beneath a ∼370‐km‐long section of the ECMA. P‐wave velocity models based on data from short‐period ocean bottom seismometers reveal a ∼21‐km‐thick crust with laterally variable lower crust velocities ranging from 6.9 to 7.5 km/s. Sections with HVLC (>7.2 km/s) alternate with two ∼30‐km‐wide areas where the average velocities are less than 7.0 km/s. This variable structure indicates that HVLC is discontinuous along the margin, reflecting variable amounts of intrusion along‐strike. Our results suggest that magmatism during rifting was segmented. The HVLC discontinuities roughly align with locations of Mid‐Atlantic Ridge fracture zones, which may suggest that rift segmentation influenced later segmentation of the Mid‐Atlantic Ridge. 
    more » « less
  4. Abstract Marine multichannel and wide‐angle seismic data constrain the distribution of seamounts, sediment cover sequence and crustal structure along a 460 km margin‐parallel transect of the Hikurangi Plateau. Seismic reflection data reveals five seamount up‐to 4.5 km high and 35–75 km wide, with heterogeneous internal velocity structure. Sediment cover decreases south‐to‐north from ∼4.5 km to ∼1–2 km. The Hikurangi Plateau crust (VP5.5–7.5 km/s) is 11 ± 1 km thick in the south, but thins by 3–4 km further north (∼7–8 km). Gravity models constructed along two seismic lines show the reduction in crustal thickness persists further east, coinciding with a bathymetric scarp. Gravity data suggest the transition in crustal thickness may reflect spatial variability in deformation and lithospheric extension associated with plateau breakup. Variability in the thickness of subducting crust may contribute to differences in megathrust geometry, upper‐plate stress state and high‐rates of contraction and uplift along the southern Hikurangi margin. 
    more » « less